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Abstract— Mobile LiDAR sensors are increasingly being used
to scan environments in ecology and forestry applications.
However reconstruction and characterization are typically
performed offline. Motivated by this, we present a LiDAR
based framework, running on a handheld device, that is
capable of creating 3D point cloud reconstructions of large
forest areas, segmenting and tracking individual trees and
creating an inventory in an online manner. Segments of a
tree from multiple views accumulated over time are combined
and the corresponding tree models are also updated. Providing
immediate feedback to the operator via a screen on the
device is a key feature of this work as it enables satisfactory
coverage of the area being mapped without gaps and missing
sections. We employ a pose-graph based SLAM system with
loop closure detection to correct for drift errors allowing us
map large areas accurately. Multi-session mapping capability
is also supported with the ability to automatically merge data
captured during different runs in a post-processing step. As
an example parameter for the forest inventory, we estimate
the Diameter at Breast Height (DBH) of individual trees, in
an online manner, by fitting cylinders to detected tree trunks
through a least-squares optimization within a RANSAC loop.
We demonstrate our mapping approach operating online in two
different forests (both ecological and commercial) with a total
travel distance spanning several kilometres. Further, our DBH
estimates are within ∼7 cm accuracy for 90% of the detected
trees in the ecological forest.

I. INTRODUCTION

Monitoring the growth of individual trees in a forest is
important to infer arboreal health. In ecology and forestry
studies, metrics of growth such as Diameter at Breast Height
(DBH) are commonly computed through manual measure-
ments, for e.g. with measuring tapes. Such metrics form the
forest inventory and describe the state of the forest.

Over the last decade, 3D LiDAR scanners have increas-
ingly been used to map forests. Automated methods to seg-
ment individual trees, construct tree models [1] and extract
metrics such as above ground biomass and carbon stock [2],
[3] have also been developed. However, these approaches
rely on high quality point clouds data captured from expen-
sive and time consuming Terrestrial Laser Scanners (TLS).
Furthermore, the analyses are performed in an offline manner
or as a post-processing step.

In this work, we present an online forestry mapping and
inventory system capable of providing real-time feedback
to the operator. We use a hand-held LiDAR setup with on-
board compute capability (see Fig. 2) as our scanning device.
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Fig. 1: Visualization of the system output. Mapping results on the
Wytham Woods dataset surveyed in a lawn-mower pattern. Top:
Accumulated point cloud reconstruction and the extracted trees.
Middle: Cross-sectional views of the clouds shown above. Bottom:
Zoomed in view of the extracted trees, showing the path of the
camera in black.

This facilitates an easier, more flexible and faster surveying
experience in comparison to traditional TLS systems.

present an online forestry mapping and inventory system
capable of providing real-time feedback to the operator on
the ground.

In our previous work [4] we presented a framework for
estimating DBH metrics from LiDAR point clouds in an
online manner. We showed that these estimates are within ∼
7cm accuracy for 90% of the detected trees in an ecological
forest. Here, we extend this framework with a mapping
system that takes into account the challenges of typical



forestry surveys. We use an elastic pose-graph structure as
the underlying representation, which allows us to scale the
map to large areas. We also support multi-session mapping
allowing the operator to survey the forest in multiple runs,
which may be necessary due to battery constraints or operator
fatigue.

The main contributions of this work are as follows:
• An online mapping system for forest environments

using a handheld LiDAR with real-time feedback.
• A pose-graph based SLAM system with loop closure

integration to correct for odometry drift, and to maintain
an accurate tree map over large areas.

• Segmentation, tracking, modelling and estimation of
DBH for individual trees in the forest.

• Multi-session mapping capability to merge maps gener-
ated from separate runs as a post-processing step.

• Demonstration of the system in challenging large scale
forest environments spanning several kilometres.

II. RELATED WORK

Advances in LiDAR technology have led to it being
used in non-traditional fields such as ecology, forestry and
remote sensing. Here, we review some of the state-of-the-art
approaches for tree segmentation from LiDAR point clouds.
We first review techniques developed for high end Terres-
trial LiDAR scanners followed by more recent approaches
developed for mobile LiDAR scanners.

A. Tree Segmentation Using Terrestrial LiDAR

Many existing tree segmentation techniques operate on
a point cloud accumulated from multiple static scanning
locations using a Terrestrial Laser Scanner (TLS), in post-
processing. Raumonen et al. [5] and Trochta et al. [6]
clustered these scans into smaller point clouds to work
around large size of these scans and to reduce memory
consumption. They then segmented tree-level clouds within
each cluster by growing segments using assumptions of fixed
inter-cluster distance and orientation to infer connectivity.
Methods such as [7] utilize concepts from graph theory to
find the connectivity between adjacent points and segment
each tree. These approaches, however, rely on multiple
assumptions about a tree’s architecture as well as assuming
minimal interconnection between their crowns.

In [8] Burt et al. present a software package named treeseg
that uses region-growing technique is to segment individual
trees. Key features in treeseg’s design are its independence
of forest type, scanning instrument and no assumptions about
the tree structure.

B. Tree Segmentation Using Mobile LiDAR

Most of the above approaches are intended primarily for
very high quality TLS point clouds. Their performance drops
when applied to noisier point clouds captured from Aerial
Laser Scanners (ALS) and ground based mobile laser scan-
ners (MLS). However, the lower cost and increased portabil-
ity of mobile laser scanners in comparison to TLS outweighs
makes them a desirable pick despite the measurement data

being noisier. As a result several works have looked at tree
segmentation and automatic inventory generation systems for
these scanners.

Heo et al. [9] used mobile LiDAR to collect data in an
urban area, including parks and streets, to estimate the height
of trees and their DBH by calculating the height-above-
ground and using a least-squares circle fit approach [10].
They emphasised the advantage of using mobile LiDAR
to reduce shadow and occlusion effects, which are more
prominent with terrestrial LiDAR systems, especially in an
urban forest environment. They utilised a Stencil LiDAR
system produced by Kaarta1 which includes a Velodyne
sensor.

Similarly, Zhou et al. [11] collected LiDAR data with
a Velodyne VLP-16 LiDAR sensor. In offline processing
the authors estimated the DBH of the trees. They removed
the points residing on the ground and estimated the DBH
using Random Sample Consensus (RANSAC) algorithm on
the segments produced by an Euclidean-based clustering
algorithm [12].

Westling et al. [13] scanned individual avocado trees with
a 5 m spacing using a GeoSLAM Zebedee 1 handheld device.
The authors first voxelised point clouds and conducted a
graph-based search over the voxels to find all paths connect-
ing to a root voxel, which was considered to be the tree node.
The tree node is segmented from the ground by comparing
the height of points locally within a search radius.

More recently data driven and learning based approaches
have also been used for tree segmentation. Digumarti et
al. [14] train a random forest classifier to segment individual
trees into their component structures. Convolutional Neural
Networks (CNNs), trained on simulated tree data are used
in [15] to segment trees from colour and depth images.
Windrim and Bryson [16] detect trees in point clouds col-
lected using ALS by encoding the point clouds as a 2D
raster image and detecting points of high density. This is
followed by applying a segmentation network, adapted from
PointNet [17], to segment trees. Krisanski et al. [18] further
extend the idea of learning based tree segmentation and
present a sensor agnostic approach that works point clouds
of different densities.

The above presented approaches typically work as post-
processing techniques applied after data collection. This does
not allow the operator to perceive the reconstruction during
scanning. Our motivation is to develop a LiDAR-driven
technique which can reconstruct point clouds, extract indi-
vidual trees and estimate their structural parameters in dense
forests with rough terrain in real-time. A real-time mapping
system can ensure full coverage by providing feedback to the
operator, to help identify gaps in the scanned region, enable
rescanning and ensure that the environment is fully scanned
and processed at runtime.



Fig. 2: The handheld device used in our system. The labelled
components work together to provide online feedback on the
forestry data collection

Fig. 3: An overview of the system architecture. The frequencies of
communication between blocks are shown.

III. APPROACH

A. System Description

Our device consists of an Ouster OS0-128 LiDAR and an
Intel Realsense D435i( Fig. 2). In this work, we only use
data from the LiDAR scanner and its inbuilt IMU as inputs
to our odometry and tree tracking systems. The LiDAR has
128 beams and a 90◦ vertical field of view (FOV). While it
cannot completely cover the environment vertically, the 90◦

vertical FOV is sufficient to identify individual trees within
about 20 m of the sensor.

The proposed system architecture is shown in Fig. 3. Due
to the system’s online nature, the architecture is different
from many existing methods, and alterations have been made
to parallelise and speed up the overall pipeline.

Advantages of using this online fused data approach are
that the success of data collection can be evaluated online
through real time feedback, data collection and analysis is
quick, and prior inventory data can be used to automatically
identify trees.

1https://www.kaarta.com/
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Fig. 4: Pose-graph representation of the SLAM system. Each node
represents the pose of the sensor and the edges represent constraints
from multiple sources.

B. Localization and Mapping

1) LiDAR Odometry: A LiDAR-inertial odometry module
estimates the pose of the sensor. Our system [19] is a
factor-graph based windowed smoother which fuses IMU
readings with range measurements from the LiDAR. We use
IMU pre-integration to remove motion distortion from scans
and to initialise Iterative Closest Point (ICP) registration,
specifically the implementation of Pomerleau [20]. ICP is
used to determine the relative transforms at a frequency of
2Hz. The IMU measurements and the relative transforms
form constraints in a factor graph used to estimate poses in
a sliding window optimisation utilising iSAM2 [21] (as part
of the GTSAM library). Using the gravity information from
the IMU, we can align the clouds with the gravity direction.
This helps in determining the bases of trees.

2) Pose-graph SLAM with Loop Closures: The estimated
odometry is accurate over short distances (∼100 m), but
accumulates drift as we travel further. The pose-graph SLAM
module corrects for these drifts using loop closure con-
straints. Fig. 4 shows the pose-graph structure where nodes
represent the pose of the sensor, and the edges represent
constraints from multiple sources.

New nodes are added to the pose-graph as the device
moves through the environment (for every 5 m of travel).
Local maps created by accumulating laser scans (Mxi

) are
attached to each node (xi) of the pose graph. The point cloud
of each local map is transformed into a co-ordinate system
whose origin corresponds to a pose from the SLAM node.

Consecutive nodes in the graph are constrained with
LiDAR odometry (shown in orange) When a loop closure
is detected on re-visiting a place, a new constraint (shown
in pink) is added. By optimizing the entire graph with the
loop closure constraints, at regular intervals, pose estimates
are corrected for drift.

We detect the loop closures between non-consecutive
nodes in the graph based on their distances in the global
coordinate frame. Nodes within a distance of 3 m are iden-
tified as candidates for a possible loop closure. Local sub-
maps associated with these nodes are matched using ICP. If
a successful registration is obtained between the two sub-
map point clouds, we add a loop closure constraint in the
pose-graph given by the transformation estimated by ICP.

Finally, we obtain the combined map of the environment
M by transforming the local sub-mapsMxi

in to the global
frame using the pose of the corresponding node in the pose-
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Fig. 5: Mapping over multiple sessions as a post-processing step.
Loop closures between the two sessions are computed (in purple)
and jointly optimized. A global map is then computed using the
jointly optimized poses.

graph.
3) Multi-Session Mapping: While the pose-graph SLAM

module allows us to map large areas, forestry survey mis-
sions can require multiple scanning sessions. This may
be due to the limited battery capacity, operator fatigue or
multiple operators scanning different parts of a forest. It is
therefore vital for an effective mapping system to be able to
merge maps across multiple sessions.

We exploit the pose-graph structures built during indi-
vidual missions and use them in a post-processing step to
enable merging. At the of end of each session, we save the
pose-graph as well as the corresponding local maps to the
disk. Once all the sessions are completed, we use a place
recognition system by Giseop et al. named ScanContext [22]
to propose loop closure constraints between the different
sessions. ScanContext computes a compact descriptor for
each local map in our pose-graph. The descriptor captures
the distribution of the points in the 3D space and creates
a discriminative signature for the point cloud. We compute
these descriptors for each local map in all of the sessions, and
compare them to retrieve a set of loop-closure candidates.
The loop-closure candidates correspond to the places where
the local maps created during different sessions overlap
with each other. Note that our approach assumes that the
individual sessions have an overlap with at least one other
session in the entire mission.

The final pose-graph then consists of inter-session loop
closure constraints as illustrated in Fig. 5. We then optimize
the combined pose-graph to obtain the final poses of the
missions in a common co-ordinate frame.

C. Tree Segmentation and Tracking

In parallel to the mapping module, we process the in-
coming LiDAR scans to segment and track trees. Unlike
typical forest inventory systems that segment and model trees
as a post-processing step, we segment, track and fuse each
detected tree in an online manner. Simultaneously we also
model the detected trees and compute the DBH metric.

Firstly, Euclidean segmentation is applied on the LiDAR
point cloud to roughly segment tree trunks, branches, canopy
and shrubbery. To speed up the segmentation and lessen
the radial variation of the point density, the cloud is first
downsampled using a voxel filter as also done in [8]. The
voxel grid thus formed is reformulated into a k-d tree to
efficiently find nearest neighbours of every point. These
points are clustered together into groups of points which are
within some distance threshold of each other.

Fig. 6: Filtering process on the elevation map: Original elevation
map (top) is filtered to remove spikes (middle). Finally, holes are
filled using a morphological closing filter on the grid map (bottom).

Note that the parameters of the voxel filtering and Eu-
clidean segmentation methods are tuned based on the LiDAR
sensor’s characteristics to maximise the chances that the
point clusters contain individual trees.

1) Elevation Mapping: In order to extract the bases of
the trees being tracked, we employ an open-source sensor-
centric elevation mapping framework2 which is built upon a
universal Grid Map library [23].

Consistent elevation maps of the environment surrounding
the sensor are generated at the same frequency of the LiDAR
output (10 Hz). A resolution of 16cm for the grid of 32m×
32m is used in this work.

Due to the presence of foliage and branches, the terrain
created by the elevation mapping software can contain phan-
tom spikes, making it difficult to detect the precise base of
certain trees. Slopes of each grid cell are computed and cell
with slopes greater than a threshold are removed, resulting
in a smooth terrain with a few holes that are filled using a
morphological closing filter. Fig. 6 shows this process.

Applying the chain of filters is relatively time consuming
so we update the elevation map every 8 m of travel distance
based on the state estimate from our LiDAR odometry, to
allow online operation.

2) Tree Tracking: We formally define a tree using a ‘tree
descriptor’ (t) comprising of the following elements.

• A unique id,
• Major axis of the tree incline (I, a vector): the line that

best fits a subset of the tree’s points in a least squares
sense,

• Diameter at Breast Height (DBH) (D),
• 3D position of the tree base (b): the point from the most

recent elevation map closest to the major axis,
• The minimum and maximum height of the point cloud

defining the tree (min & max).
Every tree descriptor is derived from a corresponding point

2https://github.com/ANYbotics/elevation mapping



cloud of the tree points P (t = f(P )). These points are
accumulated over time, gathering information from different
angles as well as reducing the effect of occlusion and
improving the estimate of the tree descriptor as Heo et al. [9]
indicated. Internally, the Tree Tracker holds an inventory of
n distinct trees T defined by a descriptor and set of tree
points Ti ∼ ti, Pi for 0 ≤ i ≤ n.

Every segmented cluster of points, is either assigned to an
existing tree or to a new tree. If assigned to an existing tree,
the descriptor is re-evaluated after merging the points of the
cluster to those of the tree. We also discard clusters that do
not satisfy empirically determined characteristics (θthreshold,
hthreshold) of a tree. These are:

• The major axis of a tree should be close to vertical, i.e.
|I · [0, 0, 1]| < θthreshold

• A tree should have a minimum height, i.e.
max−min < hthreshold

In order for a match between two clusters to be found, their
major axis must converge to within some threshold distance
at the base of the highest cluster or at a plane segmenting
them.

D. Estimation of Diameter at Breast Height (DBH)

To estimate the DBH of each individual tree, we employ a
cylinder fitting procedure [10] commonly used in literature.
Utilising the method described by Zhou et al. [11] and Heo et
al. [9], our system segments the LiDAR points, for recently
updated trees in T . Points (S), from the accumulated point
cloud (P ), that are located within a 10 cm height range
centred 1.4 m above the tree’s base are segmented. These
points are projected onto a plane with normal (n̂) equal to the
tree’s incline (I) to ensure the set of points can be modelled
closely to a circle. RANSAC circle fitting is then used on
the set of resultant 2D points, which is robust to potential
outliers from errors in segmentation [24].

IV. EXPERIMENTAL EVALUATION

We evaluated our system at two locations. The first is an
ecological forest called Wytham Woods in Oxford, UK. The
woods are spread over 400 ha in area and has been used
for ecology research for over 80 years. It is a Smithsonian
ForestGEO site; which is a collection of forestry plots located
world-wide used for collective ecology research. Within this
scheme, it has taken part in 3 mass censuses and about 16200
trees have been manually measured. The second location for
our evaluation is a commercial pine-tree forest one hour north
of Helsinki, Finland spread over several kilometers. These
two locations differ in the type and densities of trees as well
as different profiles of the underlying terrain.

Evaluation of the accuracy of the LiDAR odometry mod-
ule, DBH estimation module, and timing analysis are pre-
sented in our previous work [4]. Here we focus present
results of large-scale mapping and multi-session mapping
capabilities of our framework.

Fig. 7: Effect of loop closures on the estimated trajectory of the
device. Odometry estimate (in black) and SLAM pose estimate with
loop closures (in black) for a 1.3 Km long trajectory. The odometry
estimate drift can be clearly seen at the start/end position. The drift
accumulated for this trajectory is around 25 m.

Fig. 8: Pose-graphs from individual sessions visualized in different
colors. Loop closures both with-in the same session, and in-between
different sessions in shown in red. The total travel distance of all
the 4 km.

A. Large-scale Mapping with Loop Closures

Fig. 1 shows the mapping results from the Wytham woods
dataset. This dataset covers an area of about 0.5 ha traversed
in a lawn-mower pattern with a spacing of about 10 m.
Several loop-closures have been detected towards the end
of each row allowing the SLAM system to correct for drift
error. The figure also shows the point cloud reconstruction
and the extracted trees. The terrain profile of the forest is
visible in the cross sectional view.

We highlight the effect of the loop closures on the pose
estimation in Fig. 7. The estimated trajectory using only
LiDAR odometry (in black) accumulates a drift of 25 m in
comparison to the SLAM trajectory which uses loop closures
(in green) over a total trajectory length of 1.3 Km.

B. Mapping over Multiple Sessions

Data in the commercial pine forest in Finland was recorded
over three sessions, mapping areas with increasing density
of trees in each session. The operator starts and ends at the



Fig. 9: Mapping results on a large-scale dataset from a commercial pine tree forest in Finland. Figure shows the point cloud reconstruction
of the forest obtained by merging all the local maps after joint pose-graph optimization.

Fig. 10: Zoomed-in view of a portion of the forest shown in Figure
9 showing dense clusters corresponding to individual trees. The
trajectory traversed (green) and the detected loop closures (red) are
also shown.

same position and walks along an access road to a plot of
trees, in all the sessions, as shown in Fig. 8. The total travel
distance of the combined missions is over 4 kms with each
session being roughly equal in length. Note that the three
sessions have overlapping areas which is recognized by the
loop closure module. An example of such a loop closure is
shown in Fig. 11. The point cloud reconstruction of the forest
obtained by merging the local maps of the three sessions after
joint pose-graph optimization is shown in Fig. 9.

This dataset consists of several challenging elements,
including long corridor like passages between rows of trees,
dense forest patches with limited LiDAR range due to occlu-
sions, transitions in between areas with different densities.
Further, as the dataset is captured with a human operator
walking on rough surface, the sensor module is often subject
to shaking and fast motions. Despite these challenges, our
mapping system was successfully able to map each of ses-
sions as well as to merge them together in a post-processing
step.

Fig. 11: Example of a loop closure detected between Session 1
and Session 2. Top: The corresponding point clouds overlaid on
each other after ICP registration. Point cloud from Session 1 is
shown in red whereas white points are from Session 2. Bottom:
Corresponding camera images of the loop closure candidates are
shown. Note that the loop closures are detected only from the
LiDAR data, and the images are shown for illustrative purposes
only.

The performance of the ScanContext loop proposal mech-
anism was impressive. Despite being originally developed for
automotive localisation, it was still successful in our forestry
application. We noticed that loops could be found in the
forests where the separation between trees was managed. Per-
formance degraded in unmanaged forests where trees were
typically smaller samplings and with little clear separation. A
further study would be necessary to properly evaluate place
recognition algorithms in these types of environments.
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Fig. 12: Reconstruction and tree extraction results using LiDAR
scanners with different sparsity levels. Top: 128 beam LiDAR
resulting in a denser point cloud reconstruction. Bottom: 64 beam
LiDAR resulting in a sparser point cloud reconstruction. The
proposed tree extraction approach is robust to different sparsity
levels.

C. Mapping with Different Sparsity Levels

In this section, we show that our mapping and segmen-
tation pipeline can deal with different sparsity of LiDAR
without additional tuning. To test this capability, we recorded
datasets using Ouster LiDAR OS0-128 and Ouster LiDAR
OS1-64, which are 128 beam and 64 beam LiDARs respec-
tively. As seen in Fig. 12, OS0-128 provides a much denser
point cloud in comparison to OS1-64. The two sensors also
have different vertical field of views (FOVs) and maximum
ranges. The experimental results suggest that a narrow FOV
and range are sufficient for our application of estimating
DBH and the motion from odometry. Our algorithms have a
voxel filtering step at the beginning which ensures that the
subsequent steps are robust to sensor changes.

V. CONCLUSION

This paper presented a mobile LiDAR scanning system for
mapping large forest areas, automatic segmentation of trees
and the online estimation of their DBH. The architecture of
a tree tracking functional block was introduced to facilitate
the online operation of this system. We tested the system’s
performance using data from a well studied ecological forest,
Wytham Woods, UK as well as a commercial forest in Fin-
land to prove that acceptable results can be achieved online
which compares favourably to the performance achieved by a
commercial software package conducted in post-processing.

We currently only extract tree trunks and compute the
DBH metric. In the future, we would like to extend the
breadth of metrics used to characterise trees. In particular,
we would like to quantify information on the branching of
the tree, as well as properties related to the tree crown. We
plan to integrate information from the cameras as well as
extract semantics to estimate a richer set of quantitative and
qualitative metrics for the forest inventory.

One of the limitations identified in the experimental analy-
sis was the downgraded performance on small trees. We like
to address this issue by considering a adaptive segmentation
algorithm such as in [14] to improve performance on the
smaller trees. Finally, by more fully using the screen we
intend to provide feedback to the operator to better direct
their actions during operation.

ACKNOWLEDGMENTS

This research is supported by the UKRI/EPSRC ORCA
Robotics Hub (EP/R026173/1). M. Fallon is supported by a
Royal Society University Research Fellowship. The authors
would like to Taneli Vuornos (Silvere) for the collection of
the data used in Sec. IV-B.

REFERENCES

[1] P. Raumonen, M. Kaasalainen, M. Åkerblom, S. Kaasalainen,
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